metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquachlorido{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilodimethylidyne)]diphenolato- $\kappa^2 O^1$,N,N', O^1 '}cobalt(III) monohydrate

Jianxin Xing

Department of Biology, Dezhou University, Dezhou 253023, People's Republic of China

Correspondence e-mail: jianxin_xing@163.com

Received 19 March 2009; accepted 26 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; disorder in solvent or counterion; R factor = 0.074; wR factor = 0.259; data-to-parameter ratio = 15.0.

The title compound, $[Co(C_{18}H_{18}N_2O_4)Cl(H_2O)] \cdot H_2O$, contains a distorted octahedral cobalt(III) complex with a 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilodimethylidyne)]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent molecule (half-occupancy). The Co^{III} ion is coordinated in an N₂O₃Cl manner. Weak O– H···O hydrogen bonds may help to stabilize the crystal packing.

Related literature

For related literature, see: Aurangzeb *et al.* (1994); Hulme *et al.* (1997); Li *et al.* (2008); Fei & Fang (2008); Wang *et al.* (1979); Xia *et al.* (2007); Zhang & Janiak (2001).

Experimental

Crystal data

 $[\operatorname{Co}(\operatorname{C}_{18}\operatorname{H}_{18}\operatorname{N}_2\operatorname{O}_4)\operatorname{Cl}(\operatorname{H}_2\operatorname{O})]\cdot\operatorname{H}_2\operatorname{O}\\M_r=456.76$

Trigonal, $R\overline{3}$ a = 26.490 (2) Å

c = 15.6234 (17) Å $V = 9494.5 (14) \text{ Å}^3$ Z = 18Mo *K* α radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T_{min} = 0.868, T_{max} = 0.917

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.259$ S = 1.034116 reflections 13737 measured reflections 4116 independent reflections 2834 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$

 $\mu = 0.98 \text{ mm}^{-1}$

 $0.15 \times 0.13 \times 0.09 \text{ mm}$

T = 293 K

274 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.55$ e Å⁻³ $\Delta \rho_{min} = -1.03$ e Å⁻³

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O7 - H7D \cdots O3^{i}$	0.86	2.44	2.883 (5)	113
$O7 - H7D \cdots O5^{i}$	0.86	2.22	3.078 (5)	178
$O7 - H7C \cdots O6^{i}$	0.84	2.58	3.033 (6)	115
$O7 - H7C \cdot \cdot \cdot O4^{i}$	0.84	1.95	2.798 (5)	178
$O2 - H2D \cdots O2^{ii}$	0.86	2.01	2.861 (9)	178
$O2-H2C\cdots O8^{ii}$	0.84	2.13	2.868 (19)	147
$O2-H2C\cdots O1^{ii}$	0.84	1.72	2.56 (3)	175
$O8 - H8E \cdots O2^{iii}$	0.85	2.04	2.868 (19)	163
$O8 - H8D \cdots Cl1$	0.84	2.34	3.147 (12)	163
$O1 - H1D \cdots Cl1$	0.85	2.34	3.11 (3)	150
Summatry and a (i) $-x \pm 5 - y$	1 - 4. 4	(ii) v u 1 v	1 - 2. (;;;)

Symmetry codes: (i) $-x + \frac{5}{3}, -y + \frac{1}{3}, -z + \frac{4}{3}$; (ii) $x - y + \frac{1}{3}, x - \frac{1}{3}, -z + \frac{2}{3}$; (iii) $y + \frac{1}{3}, -x + y + \frac{2}{3}, -z + \frac{2}{3}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Sheldrick, 1998); software used to prepare material for publication: *XP*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2491).

References

- Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.
- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.
- Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.
- Li, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). *CrystEngComm*, **8**, 3141–3143.

Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, B.-C., Huie, B. T. & Schaefer, W. P. (1979). Acta Cryst. B35, 1232–1234.
 Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40– 041
- Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.

Acta Cryst. (2009). E65, m468 [doi:10.1107/S1600536809011167]

Aquachlorido {6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilodimethylidyne)]diphenolato- $\kappa^2 O^1$, N, N', O^1 '}cobalt(III) monohydrate

J. Xing

Comment

The synthesis and structural investigation of Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Aurangzeb *et al.*, 1994, Hulme *et al.*, 1997; Li *et al.*, 2008; Fei & Fang, 2008; Zhang & Janiak, 2001). Here, we report a new Schiff base cobalt complex based on the tetradentate Schiff base ligand 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol.

The molecular structure of title compound is shown in Fig. 1. The coordination sphere for the Co^{III} ion in the title complex is a distorted octahedron, in which four equational positions come from two N atoms, two O atoms of the Schiff base ligand, and the other two *trans* ones are occupied by one chloro ion and the O atom of water molecule. The Co—O and Co—N bond lengths are basically consistent with the corresponding distances in the similar cobalt tetradentate Schiff base complex bis[[μ -bis(salicylaldehyde)ethylenediimine]-dicobalt(III) dichloride chloroform solvate(Wang, *et al.*, 1979), while the Co—O (H₂O) and the Co—Cl bond lengths are slightly longer than those found in the same complex. Additional, molecules are held together *via* intermolecular O—H···O and intramolecular O—H···Cl and O—H···O hydrogen bonds.

Experimental

6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol was synthesized according to a modified reported method (Xia, *et al.*, 2007). A mixture of CoCl₂.6H₂O (1 mmol, 237 mg), 6,6'-dimethoxy-2,2'-(ethane-1,2diyldiiminodimethylene)diphenol (1 mmol, 326.4 mg) and 40 ml methanol was stirred for 30 min at 323 K, before it was filtered to remove the insolvable materials. Crystals suitable for X-ray diffraction analysis were obtained by slow evaparation at room temperature for three weeks with a yield about 40%.

Refinement

All H atoms bonded to the C atoms were placed in geometrically calculated positions with C—H = 0.96 Å for methyl H atoms, C—H = 0.97 Å for methylene H atoms, C—H = 0.93 Å for aromatic H atoms and were refined isotropic with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$ of parent atom using a riding model. The H atoms of the disordered H₂O were located from difference maps, in which the H_{2B} and H_{2C} were also disordered with the individual occupancy of 25%, and the O—H bond lengths were constrained to the value of 0.85 (1)Å with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atomnumbering scheme. The solvate water molecule and all the H atoms have been omitted for clarity.

Aquachlorido {6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilodimethylidyne)]diphenolato- $\kappa^2 O^1, N, N', O^1'$ cobalt(III) monohydrate

Crystal data	
$[Co(C_{18}H_{18}N_2O_4)Cl(H_2O)]\cdot H_2O$	Z = 18
$M_r = 456.76$	$F_{000} = 4248$
Trigonal, $R\overline{3}$	$D_{\rm x} = 1.438 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.438 \text{ Mg m}^{-3}$
	$D_{\rm m}$ measured by not measured
Hall symbol: -R 3	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 26.490 (2) Å	Cell parameters from 5356 reflections
b = 26.490 (2) Å	$\theta = 2.7 - 26.9^{\circ}$
c = 15.6234 (17) Å	$\mu = 0.98 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 K
$\beta = 90^{\circ}$	Block, orange
$\gamma = 120^{\circ}$	$0.15\times0.13\times0.09~mm$
$V = 9494.5 (14) \text{ Å}^3$	

Data collection

4116 independent reflections
2834 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.062$
$\theta_{\rm max} = 26.2^{\circ}$
$\theta_{\min} = 1.5^{\circ}$
$h = -28 \rightarrow 32$
$k = -32 \rightarrow 25$
$l = -19 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.074$	H-atom parameters constrained

$wR(F^2) = 0.259$	$w = 1/[\sigma^2(F_o^2) + (0.1835P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
4116 reflections	$\Delta \rho_{\text{max}} = 1.55 \text{ e Å}^{-3}$
274 parameters	$\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

F 1		1.	1	• , •		• 1 /	• , •	1. 1	1 .	,	18	Ζ \
Fractional	atomic	coordinates	and	isofronic	or	eauwalent	isofronic	displ	acement	narameters	IA^{-}	-)
1 / 00011011011	aronne	coordinates	cirici	isonopie	01	equivalent	isonopie	<i>cuspi</i>	accincint	parameters	(**	/

	x	у	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Col	0.73792 (3)	0.12280 (3)	0.59262 (4)	0.0357 (3)	
Cl1	0.62851 (7)	0.08016 (8)	0.61355 (10)	0.0637 (5)	
01	0.5945 (14)	0.144 (3)	0.478 (3)	0.057 (16)	0.15 (3)
H1C	0.6127	0.1636	0.4355	0.068*	0.15 (3)
H1D	0.6144	0.1305	0.5014	0.068*	0.15 (3)
08	0.5817 (6)	0.1059 (11)	0.4435 (11)	0.058 (7)	0.35 (3)
H8E	0.5971	0.1406	0.4241	0.069*	0.35 (3)
H8D	0.5990	0.1068	0.4887	0.069*	0.35 (3)
02	0.7381 (4)	0.2826 (4)	0.3172 (5)	0.055 (2)	0.50
H2C	0.7532	0.2773	0.2735	0.066*	0.25
H2D	0.7539	0.3193	0.3258	0.066*	0.50
H2B	0.7012	0.2675	0.3109	0.066*	0.25
03	0.74870 (15)	0.07928 (14)	0.6768 (2)	0.0349 (8)	
04	0.76146 (16)	0.18833 (15)	0.6619 (2)	0.0404 (8)	
05	0.77398 (18)	0.04171 (17)	0.8092 (2)	0.0481 (9)	
O6	0.78604 (19)	0.25833 (17)	0.7866 (3)	0.0552 (10)	
07	0.83443 (14)	0.15912 (15)	0.5522 (2)	0.0401 (8)	
H7C	0.8552	0.1539	0.5881	0.048*	
H7D	0.8499	0.1958	0.5434	0.048*	
N1	0.71890 (18)	0.06087 (19)	0.5088 (2)	0.0376 (9)	
N2	0.73614 (19)	0.1675 (2)	0.4961 (3)	0.0422 (10)	
C1	0.7312 (2)	-0.0054 (2)	0.5961 (3)	0.0417 (12)	
C2	0.7457 (2)	0.0273 (2)	0.6710 (3)	0.0352 (10)	
C3	0.7579 (3)	0.0050 (2)	0.7421 (3)	0.0429 (12)	
C4	0.7545 (3)	-0.0489 (3)	0.7403 (4)	0.0608 (17)	

H4	0.7633	-0.0628	0.7894	0.073*
C5	0.7387 (4)	-0.0815 (3)	0.6683 (5)	0.074 (2)
H5	0.7354	-0.1181	0.6685	0.088*
C6	0.7280 (3)	-0.0612 (3)	0.5979 (5)	0.0592 (16)
H6	0.7182	-0.0835	0.5482	0.071*
C7	0.7192 (2)	0.0129 (2)	0.5214 (3)	0.0399 (11)
H7	0.7102	-0.0118	0.4745	0.048*
C8	0.7796 (3)	0.0185 (4)	0.8876 (4)	0.070 (2)
H8A	0.7445	-0.0177	0.8988	0.104*
H8B	0.7861	0.0456	0.9329	0.104*
H8C	0.8120	0.0118	0.8844	0.104*
C9	0.7448 (2)	0.2507 (3)	0.5713 (4)	0.0462 (12)
C10	0.7583 (2)	0.2354 (2)	0.6479 (3)	0.0406 (12)
C11	0.7708 (3)	0.2746 (2)	0.7164 (4)	0.0473 (13)
C12	0.7685 (3)	0.3254 (3)	0.7061 (5)	0.0666 (18)
H12	0.7766	0.3503	0.7525	0.080*
C13	0.7547 (4)	0.3394 (3)	0.6299 (6)	0.079 (2)
H13	0.7527	0.3733	0.6243	0.095*
C14	0.7439 (3)	0.3038 (3)	0.5620 (5)	0.0635 (17)
H14	0.7358	0.3140	0.5089	0.076*
C15	0.8063 (3)	0.2980 (3)	0.8565 (4)	0.0628 (18)
H15A	0.8427	0.3318	0.8415	0.094*
H15B	0.8117	0.2795	0.9056	0.094*
H15C	0.7781	0.3096	0.8695	0.094*
C16	0.7376 (3)	0.2170 (3)	0.4987 (4)	0.0477 (13)
H16	0.7334	0.2317	0.4468	0.057*
C17	0.7351 (3)	0.1387 (3)	0.4155 (3)	0.0537 (15)
H17A	0.7745	0.1508	0.3975	0.064*
H17B	0.7166	0.1496	0.3712	0.064*
C18	0.7020 (3)	0.0749 (3)	0.4289 (3)	0.0537 (14)
H18A	0.6606	0.0613	0.4294	0.064*
H18B	0.7099	0.0555	0.3824	0.064*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0441 (5)	0.0379 (4)	0.0280 (4)	0.0226 (3)	-0.0021 (3)	-0.0013 (2)
Cl1	0.0478 (9)	0.0909 (12)	0.0596 (10)	0.0402 (9)	0.0133 (7)	0.0135 (8)
O1	0.053 (18)	0.08 (3)	0.05 (2)	0.04 (2)	0.001 (14)	0.02 (2)
O8	0.054 (8)	0.079 (15)	0.050 (9)	0.041 (9)	0.001 (6)	0.023 (9)
O2	0.059 (5)	0.064 (5)	0.038 (4)	0.028 (4)	-0.016 (3)	-0.006 (4)
O3	0.048 (2)	0.0316 (17)	0.0316 (16)	0.0247 (16)	-0.0040 (14)	-0.0019 (13)
O4	0.055 (2)	0.0358 (19)	0.0366 (18)	0.0271 (17)	-0.0075 (15)	-0.0045 (14)
O5	0.067 (3)	0.050(2)	0.0366 (19)	0.036 (2)	-0.0030 (17)	0.0073 (16)
O6	0.070 (3)	0.041 (2)	0.052 (2)	0.025 (2)	-0.0006 (19)	-0.0114 (17)
O7	0.039 (2)	0.0397 (19)	0.0370 (19)	0.0165 (16)	-0.0023 (14)	0.0003 (14)
N1	0.035 (2)	0.044 (2)	0.031 (2)	0.0166 (19)	-0.0035 (16)	-0.0091 (17)
N2	0.043 (2)	0.052 (3)	0.033 (2)	0.025 (2)	-0.0031 (18)	0.0039 (18)

C1	0.040 (3)	0.033 (3)	0.051 (3)	0.018 (2)	-0.001 (2)	-0.009 (2)
C2	0.032 (2)	0.033 (2)	0.043 (3)	0.018 (2)	0.0029 (19)	0.0007 (19)
C3	0.052 (3)	0.040 (3)	0.041 (3)	0.027 (3)	0.004 (2)	0.008 (2)
C4	0.083 (5)	0.048 (4)	0.063 (4)	0.041 (4)	-0.004 (3)	0.008 (3)
C5	0.100 (6)	0.042 (4)	0.091 (6)	0.044 (4)	-0.014 (4)	-0.005 (3)
C6	0.072 (4)	0.038 (3)	0.070 (4)	0.029 (3)	-0.002 (3)	-0.013 (3)
C7	0.035 (3)	0.037 (3)	0.041 (3)	0.014 (2)	-0.004 (2)	-0.015 (2)
C8	0.096 (5)	0.088 (5)	0.038 (3)	0.056 (5)	0.000 (3)	0.018 (3)
C9	0.044 (3)	0.047 (3)	0.055 (3)	0.028 (3)	-0.001 (2)	0.007 (2)
C10	0.040 (3)	0.035 (3)	0.052 (3)	0.021 (2)	0.004 (2)	0.002 (2)
C11	0.047 (3)	0.038 (3)	0.057 (3)	0.021 (3)	0.002 (2)	-0.005 (2)
C12	0.082 (5)	0.046 (4)	0.080 (5)	0.039 (4)	-0.002 (4)	-0.011 (3)
C13	0.093 (6)	0.051 (4)	0.108 (6)	0.047 (4)	-0.005 (5)	0.003 (4)
C14	0.068 (4)	0.055 (4)	0.079 (4)	0.040 (3)	-0.003 (3)	0.008 (3)
C15	0.060 (4)	0.053 (4)	0.056 (4)	0.014 (3)	0.002 (3)	-0.023 (3)
C16	0.047 (3)	0.053 (3)	0.046 (3)	0.026 (3)	-0.005 (2)	0.013 (2)
C17	0.064 (4)	0.063 (4)	0.029 (3)	0.028 (3)	-0.005 (2)	-0.001 (2)
C18	0.062 (4)	0.066 (4)	0.033 (3)	0.032 (3)	-0.008 (2)	-0.009 (3)

Geometric parameters (Å, °)

Co1—O3	1.863 (3)	C2—C3	1.370 (7)
Co1—O4	1.868 (3)	C3—C4	1.385 (8)
Co1—N2	1.932 (4)	C4—C5	1.350 (9)
Co1—N1	1.957 (4)	C4—H4	0.9300
Co1—O7	2.324 (3)	C5—C6	1.315 (10)
Co1—Cl1	2.5513 (17)	С5—Н5	0.9300
O1—H1C	0.8381	С6—Н6	0.9300
O1—H1D	0.8514	С7—Н7	0.9300
O1—H8E	0.8596	C8—H8A	0.9600
O1—H8D	1.0649	С8—Н8В	0.9600
O8—H1D	1.1965	C8—H8C	0.9600
O8—H8E	0.8530	C9—C10	1.367 (8)
O8—H8D	0.8360	C9—C16	1.396 (8)
O2—H2C	0.8374	C9—C14	1.426 (8)
O2—H2D	0.8561	C10—C11	1.411 (8)
O2—H2B	0.8563	C11—C12	1.385 (9)
O3—C2	1.342 (6)	C12—C13	1.350 (11)
O4—C10	1.309 (6)	C12—H12	0.9300
O5—C3	1.347 (7)	C13—C14	1.352 (10)
O5—C8	1.412 (7)	С13—Н13	0.9300
O6—C11	1.314 (7)	C14—H14	0.9300
O6—C15	1.422 (7)	C15—H15A	0.9600
O7—H7C	0.8439	C15—H15B	0.9600
O7—H7D	0.8561	C15—H15C	0.9600
N1—C7	1.290 (7)	С16—Н16	0.9300
N1—C18	1.436 (7)	C17—C18	1.480 (9)
N2—C16	1.294 (8)	C17—H17A	0.9700
N2—C17	1.465 (7)	С17—Н17В	0.9700

C1—C7	1.362 (7)	C18—H18A	0.9700
C1—C2	1.391 (7)	C18—H18B	0.9700
C1—C6	1.438 (8)		
O3—Co1—O4	94.76 (14)	C6—C5—C4	119.7 (6)
O3—Co1—N2	171.32 (17)	С6—С5—Н5	120.1
O4—Co1—N2	88.92 (18)	С4—С5—Н5	120.1
O3—Co1—N1	90.48 (16)	C5—C6—C1	121.5 (6)
O4—Co1—N1	172.92 (17)	С5—С6—Н6	119.3
N2—Co1—N1	85.24 (18)	С1—С6—Н6	119.3
O3—Co1—O7	88.31 (14)	N1—C7—C1	126.8 (5)
O4—Co1—O7	89.17 (15)	N1—C7—H7	116.6
N2—Co1—O7	83.87 (16)	С1—С7—Н7	116.6
N1—Co1—O7	86.23 (15)	О5—С8—Н8А	109.5
O3—Co1—Cl1	97.31 (12)	O5—C8—H8B	109.5
O4—Co1—Cl1	96.58 (13)	H8A—C8—H8B	109.5
N2—Co1—Cl1	90.05 (14)	O5—C8—H8C	109.5
N1—Co1—Cl1	87.44 (13)	H8A—C8—H8C	109.5
O7—Co1—Cl1	171.56 (10)	H8B—C8—H8C	109.5
H1C—O1—H1D	108.1	C10—C9—C16	119.6 (5)
H1C-01-H8E	39.0	C10—C9—C14	121.2 (6)
H1D-01-H8E	105.8	C16—C9—C14	118.9 (5)
H1C-01-H8D	113.4	04	125.4 (5)
H1D-01-H8D	33.5	04-C10-C11	118.2 (5)
H8E—O1—H8D	89.9	C9—C10—C11	116.4 (5)
H1C-08-H1D	65 3	06-C11-C12	125.9 (6)
H1C-08-H8E	16.5	06-C11-C10	112.8 (5)
H1D-08-H8E	81.6	C12-C11-C10	121.2 (6)
H1C - O8 - H8D	91.9	C13 - C12 - C11	121.2 (6)
H1D-08-H8D	26.9	C13 - C12 - H12	119.4
H8E - 08 - H8D	108.1	C11 - C12 - H12	119.4
$H_{2}C_{}O_{2}$ $H_{2}D_{}H_{2}D_{}$	108.4	C12-C13-C14	119.5 (6)
$H_2C = O_2 = H_2B$	111.0	C12 - C13 - H13	120.2
$H^2D = O^2 = H^2B$	110.1	C12 - C13 - H13	120.2
$C_{2} = 0^{3} = C_{0}^{1}$	129.7 (3)	C_{13} C_{14} C_{9}	120.2 120.3(7)
$C_{10} - O_{1} - C_{01}$	129.7(3) 129.6(3)	C13 - C14 - H14	110.8
$C_{10}^{3} = C_{10}^{5} = C_{10}^{8}$	125.0(5)	$C_{13} = C_{14} = H_{14}$	119.8
$C_{11} = 06 = C_{15}$	117.5 (5)	06-015-H15A	109.5
Co1_07_H7C	117.5 (5)	06	109.5
$C_{01} = 07 = H7D$	108.4	H15A C15 H15B	109.5
	108.4	06 C15 H15C	109.5
172 - 07 - 172	100.2 122.9 (4)	H15A_C15_H15C	109.5
C7 - N1 - C13	122.9(4) 126.7(3)	H15B_C15_H15C	109.5
$C_1 = N_1 = C_0 I$	120.7(3)	N2Q	109.5
$C_{16} = N_1 = C_{17}$	122.5 (5)	$N_2 = C_{10} = C_{10}$	120.8 (5)
$C_{10} = N_2 = C_{11}$	122.3(3) 1269(4)	C_{0}	116.6
$C_{10} = N_2 = C_{01}$	110.6 (4)	N_{2} C_{17} C_{18}	108 7 (5)
$C_{1} = 12 = C_{1}$	122 6 (5)	$N_2 = C_1 = C_{10}$ $N_2 = C_{17} = H_{17A}$	110.0
$C_{7} = C_{1} = C_{2}$	122.0(3)	112 - 017 - 1117A	110.0
$C_1 = C_1 = C_0$	110.7(3)	N2 C17 H17D	110.0
L2-L1-L0	110.7 (3)	N2-U1/	110.0

O3—C2—C3	118.8 (4)	C18—C17—H17B	110.0
O3—C2—C1	123.6 (5)	H17A—C17—H17B	108.3
C3—C2—C1	117.6 (5)	N1-C18-C17	109.6 (5)
O5—C3—C2	112.2 (4)	N1-C18-H18A	109.7
O5—C3—C4	126.4 (5)	C17—C18—H18A	109.7
C2—C3—C4	121.4 (5)	N1-C18-H18B	109.7
C5—C4—C3	121.0 (6)	C17—C18—H18B	109.7
С5—С4—Н4	119.5	H18A—C18—H18B	108.2
C3—C4—H4	119.5		

Hydrogen-bond geometry (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
07 U7D 05 ⁱ 0.86 2.22 3.078 (5) 178	
0/—H/D···05 0.80 2.22 5.078(5) 178	
O7—H7C···O6 ⁱ 0.84 2.58 3.033 (6) 115	
O7—H7C···O4 ⁱ 0.84 1.95 2.798 (5) 178	
O2—H2D···O2 ⁱⁱ 0.86 2.01 2.861 (9) 178	
O2—H2C···O8 ⁱⁱ 0.84 2.13 2.868 (19) 147	
O2—H2C···O1 ⁱⁱ 0.84 1.72 2.56 (3) 175	
O8—H8E···O2 ⁱⁱⁱ 0.85 2.04 2.868 (19) 163	
O8—H8D···Cl1 0.84 2.34 3.147 (12) 163	
O1—H1D···Cl1 0.85 2.34 3.11 (3) 150	

Symmetry codes: (i) -x+5/3, -y+1/3, -z+4/3; (ii) x-y+1/3, x-1/3, -z+2/3; (iii) y+1/3, -x+y+2/3, -z+2/3.

